Search results for " drug design"

showing 10 items of 25 documents

Aza-macrocyclic triphenylamine ligands for G-quadruplex recognition

2018

A new series of triphenylamine-based ligands with one (TPA1PY), two (TPA2PY) or three pendant aza-macrocycle(s) (TPA3PY) has been synthesised and studied by means of pH-metric titrations, UV/Vis spectroscopy and fluorescence experiments. The affinity of these ligands for G-quadruplex (G4) DNA and the selectivity they show for G4s over duplex DNA were investigated by Forster resonance energy transfer (FRET) melting assays, fluorimetric titrations and circular dichroism spectroscopy. Interestingly, the interactions of the bi- and especially the tri-branched ligands with G4s lead to a very intense redshifted fluorescence emission band that may be associated with intermolecular aggregation betw…

0301 basic medicineCircular dichroismaggregation-induced emissionChemistry Multidisciplinaryamines010402 general chemistryG-quadruplexTriphenylamine01 natural sciencesCatalysisCIRCULAR-DICHROISM03 medical and health scienceschemistry.chemical_compoundGeneral chemistryfluorescent probestriphenylamine polyaminesMoleculeSpectroscopyFLUORESCENT-PROBESScience & TechnologyG-quadruplexChemistryINTRAMOLECULAR CHARGE-TRANSFERANTICANCER DRUG DESIGNOrganic ChemistryaggregationFORMING REGIONDNAGeneral ChemistryFluorescenceG-quadruplexes0104 chemical sciencesCrystallographyChemistry030104 developmental biologyFörster resonance energy transfer2-PHOTON ABSORPTIONPROMOTER REGIONPhysical SciencesEQUILIBRIUM-CONSTANTSGRAPHENE OXIDE03 Chemical Sciencesmacrocyclic ligands
researchProduct

Central nervous system involvement in ALK-rearranged NSCLC : promising strategies to overcome crizotinib resistance

2016

ABSTRACT: Introduction: ALK rearranged Non Small Cell Lung Cancers (NSCLCs) represent a distinct subgroup of patients with peculiar clinic-pathological features. These patients exhibit dramatic responses when treated with the ALK tyrosine kinase inhibitor Crizotinib, albeit Central Nervous System (CNS) activity is much less impressive than that observed against extracranial lesions. CNS involvement has become increasingly observed in these patients, given their prolonged survival. Several novel generation ALK inhibitors have been developing to increase CNS penetration and to provide more complete ALK inhibition. Areas covered: The CNS activity of Crizotinib and novel generation ALK inhibito…

0301 basic medicineLung NeoplasmsSettore MED/06 - Oncologia MedicaPyridinesPyridineDrug ResistanceNSCLCTyrosine-kinase inhibitorALK translocations Brain metastases central nervous system metastases leptomeningeal metastases NSCLC Animals Antineoplastic Agents Brain Neoplasms Carcinoma Non-Small-Cell Lung Drug Design Drug Resistance Neoplasm Gene Rearrangement Humans Lung Neoplasms Protein Kinase Inhibitors Pyrazoles Pyridines Receptor Protein-Tyrosine Kinases Oncology Pharmacology (medical)Cns penetrationAntineoplastic Agent0302 clinical medicinecentral nervous system metastasesCarcinoma Non-Small-Cell Lunghemic and lymphatic diseasesMedicinePharmacology (medical)Anaplastic Lymphoma Kinaseleptomeningeal metastaseNon-Small-Cell LungGene RearrangementBrain NeoplasmsReceptor Protein-Tyrosine Kinasemedicine.anatomical_structureOncology030220 oncology & carcinogenesisNon small cellHumanmedicine.drugBrain metastasemedicine.drug_classCentral nervous systemProtein Kinase InhibitorCNS InvolvementAntineoplastic AgentsALK translocationBrain Neoplasm03 medical and health sciencesCrizotinibAnimalsHumansCns activityCrizotinib resistanceProtein Kinase Inhibitorsleptomeningeal metastasescentral nervous system metastaseCrizotinibAnimalbusiness.industryCarcinomaReceptor Protein-Tyrosine KinasesBrain metastasesLung Neoplasm030104 developmental biologyALK translocationsDrug Resistance NeoplasmDrug DesignPyrazoleImmunologyCancer researchNeoplasmPyrazolesHuman medicinebusinessExpert review of anticancer therapy
researchProduct

Structure-Activity Relationship Analysis of 3-Phenylcoumarin-Based Monoamine Oxidase B Inhibitors

2018

Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson's disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM−1 μM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activi…

0301 basic medicineentsyymitParkinson's diseaseParkinsonin tautita311101 natural scienceslääkesuunnittelumonoamine oxidase B (MAO-B)lcsh:Chemistry03 medical and health scienceschemistry.chemical_compoundstructure-activity relationship (SAR)Dopamine3-phenylcoumarinmedicineStructure–activity relationshipoksidoreduktaasitkumariinitta116ta317inhibiittoritOriginal Researchchemistry.chemical_classificationbiologyvirtual drug designta1182General ChemistryCoumarin3. Good health0104 chemical sciences010404 medicinal & biomolecular chemistryChemistry030104 developmental biologyMonoamine neurotransmitterEnzymeBiochemistrychemistrylcsh:QD1-999Docking (molecular)biology.proteinParkinson’s diseaseMonoamine oxidase BMonoamine oxidase Amedicine.drugFrontiers in Chemistry
researchProduct

Strategies to gain novel Alzheimer’s disease diagnostics and therapeutics using modulators of ABCA transporters

2021

Adenosine-triphosphate-(ATP)-binding cassette (ABC) transport proteins are ubiquitously present membrane-bound efflux pumps that distribute endo- and xenobiotics across intra- and intercellular barriers. Discovered over 40 years ago, ABC transporters have been identified as key players in various human diseases, such as multidrug-resistant cancer and atherosclerosis, but also neurodegenerative diseases, such as Alzheimer���s disease (AD). Most prominent and well-studied are ABCB1, ABCC1, and ABCG2, not only due to their contribution to the multidrug resistance (MDR) phenotype in cancer, but also due to their contribution to AD. However, our understanding of other ABC transporters is limited…

ABCG2 (BCRP)Multitarget inhibitor (PANABC)Broad-spectrum modulatorPolypharmacologyActivationNeurosciences. Biological psychiatry. NeuropsychiatryAmyloid-beta (Aβ / Abeta)ABCA2ABCA5ArticleABCA7InductionABCB1 (P-gp)Pattern analysisDownregulationPET Tracer (PETABC)ABC transporterABCA1 (ABC1)Rational drug design and developmentAlzheimer’s diseaseRC321-571ABCC1 (MRP1)InhibitionFree neuropathology
researchProduct

Binding mode analysis of ABCA7 for the prediction of novel Alzheimer's disease therapeutics

2021

Graphical abstract

ATP Adenosine-triphosphateNBD nucleotide binding domainGSH reduced glutathionePolypharmacologyAlzheimer’s disease (AD)ATP-binding cassette transporterHTS high-throughput screeningBiochemistryABCA7Structural BiologyPLIF protein ligand interactionMSD membrane spanning domainPDB protein data bankTM transmembrane helixABC ATP-binding cassetteMultitarget modulation (PANABC)RMSD root mean square distanceABC transporter (ABCA1 ABCA4 ABCA7)Computer Science ApplicationsMOE Molecular Operating EnvironmentPharmacophoreSNP single-nucleotide polymorphismBiotechnologyResearch ArticleBBB blood-brain barrierBiophysicsDrug designComputational biologyBiologyAD Alzheimer’s diseasePET positron emission tomographyIC intracellular helixAPP amyloid precursor proteincryo-EM cryogenic-electron microscopyGeneticsHomology modelingBinding siteRational drug design and developmentComputingMethodologies_COMPUTERGRAPHICSNBD-cholesterol 7-nitro-2-13-benzoxadiazol-4-yl-cholesterolTransporterPSO particle swarm optimizationPET tracer (PETABC)ECD extracellular domainR-domain/region regulatory domain/regionABCA1biology.proteinEH extracellular helixTP248.13-248.65BODIPY-cholesterol 44-difluoro-4-bora-3a4a-diaza-s-indacene-cholesterolComputational and Structural Biotechnology Journal
researchProduct

Correlation of nitric oxide and atrial natriuretic peptide changes with altered cGMP homeostasis in liver cirrhosis.

2005

: Background: Cyclic GMP (cGMP) concentration is increased in plasma of patients with liver cirrhosis. Three possible mechanisms may contribute: increased cGMP synthesis by soluble (activated by nitric oxide), or particulate (activated by atrial natriuretic peptide (ANP)) guanylate cyclase or increased release from cells. Aim: The aim of this work was to analyze the possible contributors to increased plasma cGMP and to assess whether changes in the parameters of the system vary with the degree of liver disease (Child Pugh score) or by the presence of ascites. Methods: We measured cGMP in plasma and lymphocytes, soluble guanylate cyclase activation by nitric oxide in lymphocytes, nitrates an…

AdultLiver CirrhosisMalemedicine.medical_specialtyGUCY1B3Nitric OxideNitric oxidechemistry.chemical_compoundAtrial natriuretic peptideInternal medicinemedicineHumansLymphocytesCyclic GMPCells CulturedNitritesAgedNitratesHepatologyPenicillamineGUCY1A3AscitesMiddle AgedNPR1PDE5 drug designEndocrinologychemistryGuanylate CyclaseCGMP transportAtrial Natriuretic FactorHomeostasisLiver International
researchProduct

Effects of sildenafil on human penile blood vessels.

2000

Abstract Objectives. To investigate the effects of sildenafil on human penile blood vessels and evaluate the interaction of sildenafil with neurogenic-mediated responses. Sildenafil is currently used in the treatment of erectile dysfunction. Methods. Penile dorsal arteries and deep dorsal veins were obtained from 14 multiorgan donors. Vascular rings were suspended in organ bath chambers, and the isometric tension was recorded. We then studied the effects of sildenafil on precontracted vessels and the neurogenic (noradrenergic and nitrergic) responses. Results. Sildenafil (10 −9 to 3 × 10 −6 M) caused concentration-dependent relaxation and amplified the relaxation induced by sodium nitroprus…

AdultMalemedicine.medical_specialtyAdolescentSildenafilPhosphodiesterase InhibitorsUrologyMuscle RelaxationPiperazinesSildenafil CitrateNitric oxideVeinschemistry.chemical_compoundInternal medicineMedicineHumansSulfonesGuanethidinebusiness.industrySmooth muscle contractionArteriesMiddle AgedPDE5 drug designrespiratory tract diseasesVasodilationEndocrinologymedicine.anatomical_structurechemistryPurinesVasoconstrictioncardiovascular systemSodium nitroprussidebusinessZaprinastBlood vesselmedicine.drugMuscle ContractionPenisUrology
researchProduct

Recent advances in computational design of potent aromatase inhibitors: open-eye on endocrine-resistant breast cancers.

2019

Introduction: The vast majority of breast cancers (BC) are estrogen receptor positive (ER+). The most effective treatments to fight this BC type rely on estrogen deprivation therapy, by inhibiting the aromatase enzyme, which performs estrogen biosynthesis, or on blocking the estrogens signaling path via modulating/degrading the estrogen's specific nuclear receptor (estrogen receptor-?, ER?). While being effective at early disease stage, patients treated with aromatase inhibitors (AIs) may acquire resistance and often relapse after prolonged therapies. Areas covered: In this compendium, after an overview of the historical development of the AIs currently in clinical use, and of the computati…

Antineoplastic Agents Hormonalmedicine.drug_classCYP450sEstrogen receptorallostery; aromatase inhibitors; Breast cancer; CYP450s; ligand-based and structure-based drug design; molecular dynamics; virtual screeningBreast NeoplasmsMolecular Dynamics SimulationBioinformatics03 medical and health sciencesBreast cancer0302 clinical medicineBreast cancerDrug DiscoverymedicineEndocrine systemHumansAromataseSurvival rate030304 developmental biologyCause of deathNeoplasm Staging0303 health sciencesallosterybiologybusiness.industryAromatase Inhibitorsvirtual screeningmedicine.diseaseligand-based and structure-based drug designmolecular dynamicsSurvival RateNuclear receptorEstrogenDrug Resistance Neoplasm030220 oncology & carcinogenesisDrug Designbiology.proteinFemalebusinessExpert opinion on drug discovery
researchProduct

Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics

2021

To date, computational approaches have been recognized as a key component in drug design and discovery workflows. Developed to help researchers save time and reduce costs, several computational tools have been developed and implemented in the last twenty years. At present, they are routinely used to identify a therapeutic target, understand ligand–protein and protein–protein interactions, and identify orthosteric and allosteric binding sites, but their primary use remains the identification of hits through ligand-based and structure-based virtual screening and the optimization of lead compounds, followed by the estimation of the binding free energy. The repurposing of an old drug for the tr…

Computational approacheModels Molecularhealth care facilities manpower and servicesChemistry Pharmaceuticaldrug discovery drug design bioinformatics Docking Molecular Dynamics pharmacophore modeling QSAR drug-repurposing SARS-CoV2educationOrganic ChemistryPharmaceutical ScienceComputational BiologyAnalytical Chemistryn/aQD241-441EditorialChemistry (miscellaneous)health services administrationDrug DiscoveryMolecular MedicineHumansThermodynamicsPhysical and Theoretical Chemistryhealth care economics and organizationsMolecules
researchProduct

Design, synthesis and biological evaluation of new anticancer drugs: FGFR inhibitors

2021

Fibroblast growth factor receptors (FGFRs) constitute a family of tyrosine kinases receptors (RTKs) that exert pivotal physiological functions in human embryonic and adult tissues. Hyperactivated FGFR signaling drives tumorigenesis in multiple cancer types, including lung and brain cancers. Great effort has been laid on the development of new compounds that specifically target the FGFR axis. However, cancer cell- based and microenvironmental resistance mechanisms against FGFR inhibitors often arise and are currently poorly understood. Furthermore, FGFR-targeted therapy often presents different side effects, e due to the broad biological spectrum of the FGFR signaling axis as well as to its …

DesignhypoxiabrainglioblastomatransitionAnticancer drugs FGFR Drug design Ubiquitin Brain tumor Glioblastoma Lung cancer NSCLC SCLC Copper complexes Hypoxia activated drugs Metal drugsSettore BIO/11 - Biologia MolecolareSettore CHIM/08 - Chimica Farmaceuticalungmetal complexeFGFR1Settore CHIM/03 - Chimica Generale E InorganicacopperSettore BIO/10 - BiochimicaFGFR4Settore BIO/14 - Farmacologiacancersynthesi
researchProduct